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TECHNICAI MEMORANDUM 1431

ON THE STATISTICAL THEORY OF TURBULENCE*

By W. Heisenberg

The I1nterpretation of turbulence presented in the preceding paper
by v. Weizsaecker 1ls treated mathematlcally with the aid of the custom-
ary method of Fourler analysis. The spectrum of the turbulent motion
is derived to the smallest wave lengths, that is, Into the laminar
region; the mean pressure fluctuatlons and the correlation functions are
calculated. Finally, an sttempt is made to derive the constant which is
characteristic for the energy dissipation in the statistical turbulent
motion from the hydrodynamic equetions.

In the statistical theory of turbulence developed by G. I. Taylorl
and v. Karméh, the irregulsr turbulent motion of a fluid is described
by several chareacteristic functions between which simple mathematicsal
relations exist: the “spectral” distribution of energy to waves of dif-
ferent wave length, the correlations between the velocities at points
along a prescribed displacement in space or time, and the like., The
reports of G. I. Taylor contain detailed empirical and theoretical data
on these functions.

In his preceding report, v. Weilzsaecker> derived the most important
of these functions, the spectral distribution of energy for the limiting

*¥"Zur statistischen Theorie der Turbulenz." Zeitschrift ftir Physik,
vol. 124, 1948, pp. 628-65T7.

lTaylor, G. I.: Proc. Roy. Soc. A 151, 421 (1935); 156, 307 (1936);
16k, 15 (1938); 16k, L76 (1938).

2Kkdrmén, Th. v.: Journ. Aero. Sci. 4, 131 (1937).

3¢. F. v. Welzssecker: ZS f. Phys., belng published. V. Weizsaecker's
paper and the present treatise have been written in close collaboration
during the time of our stay in England in 1945. Only after the articles
had been finished, Mr. G. I. Taylor kindly told us (spring 1946) that
essential ideas in these articles had been found and published already
by Kolmogoroff: Compt. Rend. Acad. Sc. USSR 30, 301 (1941); 32, 16 (1941);
end Onseger (Phys. Revue 68, 286, 1945). Compare a report by G. K.
Batchelor at the VI. Internat. Kongress F. angew. Mechanik, Paris 1946.
Approximately at the same time we learned, furthermore, about a paper -
by Prandtl and Wieghardt which contains similar concepts and has mean-
while been published in the G8ttingen Academy reporte (Nachrichten der
Akademie der Wissenschaften in GBttingen, Math.-Physikal Klasse of the
year 1945, p. 6). The present paper may therefore be regarded only as
& supplement and completion of these earlier investigations.
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case of large Reynolds numbers on the basis of similitude considerations.
The following sections of this paper first will translaté v. Weizsaecker's
considerations into the accustomed terms of Fourier analysis and, with
the aid of thls translation, study the discontinulty of the spectrum for
high frequencies due to molecular viscosity. Then conclusions will be
drewn for the correlation functions and the pressure fluctuations, and
finally, a derivetion of the fundamental constent of the energy dissipa-
tion will be attempted.

1. Representation of v. Weizsaecker's Considerations
in the Terms of Fourier Components

At sufficiently high Reynolds numbers the energy dissipetion for
the turbulent motion takes place in such & manner that the lasrge turbu-
lence elements lose energy due to the fact that, for them, the energy
and momentum transfer by small turbulence elements has the effect of an
additional viscosity (cf. for instance Prandtlh).

Under steady-state conditions, energy thus 1s continuously trens-
ferred from lesrger to smaller turbulence elements, wilth the spectral
region of a certeln wave length always receiving from larger waves as
much energy as it gives off to smaller waves. For maintenance of this
equilibrium a certain energy distributlon 1s necessary which, when the
molecular friction is neglected, is represented according to v. Welzsaecker
by the law

Vi
pV_:_=p_Q_2=pfF(k)dk (1)
F(k) ~ k"'5/5
k = e signifies the wave number, v, = \/?2 or measure of
wave length ? 0

the mean velocity.5) This spectrum F(k) ~ k-5/3 is bounded on two sides.
For small wave numbers, that is, large wave lengths, for one reason or
another, it will no longer be possible to regard the flow as isotropically
turbulent, for the largest turbulence elements are governed by the geom-~
etry of the devices which generate the turbulence. This end of the spec-
trum for small k +therefore cannot in any case be the subject of a purely
statisticel theory. For large k, in. contrast, the spectrum is bounded

hL. Prandtl, Strémngslehre (Flow theory). Vieweg, Braunschweig,
3rd edition 1942, p. 105 ff. _
Sour Vo differs from the Vo in v. Weizsaecker's report by a

numericel factor of the order of magnitude of 1.
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by the molecular viscosity. For large k, finally, the molecular vis-
cosity will become larger than the spperent turbulent viscosity, and
the spectrum then will drop off very rapidly.

For the calculations, we shall use the following notation: the

velocity v in a normslized volume V is to be expanded into a Fourler
series

v = E w_rkeu_ﬂ'(& =§—Q-’an, « « « 3 Dx, Dy, Ny in‘begers) (2)
k

Therein Vi = v* -k and the number of the "natural vibrations" between
2
k and k + Ak is given6 by M Then one obtains

(2x)°
£ o] -3 foote Ty || - froom o
thus )
F(k) = (2n) 25|y, 2 (%)
From div v = O there follows
(I_E) =0 (5)

Let us call the coefficient of the molecular viscosity, p. The
mean energy loss then is, because of div v = O with the assumption
that the bounding surfaces are at rest:

6This method is somewhat less apparent, but mathematically more
convenient than the customary expansion with respect to sin and cos.
It emounts formally to the limiting condition that ¥,dv/dx, . . . at a
bounding surface of the volume V are to have the same values as at the
opposite bounding surface. -
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If the spectrum obeys in & large reglon the law P(k)
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(6)

(7)

~ k-5/3, the

total energy is determined by the largest turbulence elements. We may

essume for instance that the law k-5/3 1s valid down to & minimum wave
number kg; for smaeller k we shall assume F(k) = 0. Then

v = 2 f: F)ax = 2 /;O“’ s a = 3052/

Thus
o= 5 x5

and

v 2 kA 2/3
F(k)=%3;5—/3 for k.>k,

] 1t
K| T 3

(8)

(9)

(10)

V. Welzssecker considers the energy loss Sy of that portion of

the total spectrum the wave numbers of which lie below k.

For these

turbulence elements, the turbulence elements of smaller wave length
(<2n/k) have the effect of an additional viscosity. One msy therefore

generally write

Sk = (u + ﬂk) Ak F(k') 2k'%ak’

where e 1s to designete the additional turbulent viscosity; it is
produced by the cumulative action of all turbulence elements with wave

(11)

lengths <:2n/k. With respect to dimensions, Mx 18 according to
Prandtl the product of density, mixing length, and veloclty where the
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mixing length will be compareble to the diameter of the turbulence ele-~
mente In question whereas the velocity of the turbulence elements is

glven for instance by vo(ko/k)l/3. With reference to v. Welzsaecker's
report one will therefore put

n= o [ o [EGD) (12)

k'3

(r is a numerical factor)

The expression below the integration sign is essentilally determined by
dimensional considerations; but one could of course imagine that, for
instance, the waves k' in the proximity of k enter into the integral
with somewhat different weights than the waves with large Xk values;
that is, the integrand could depend, in addition, on the dimensionless
number k'/k. However, because of the homogeneous form of the spectrum

k) ~ k'5/3, one may include all these uncertainties in the numericsal .
factor % and give to the integral arbiltrarily the exact form (12).

This method is unobjectionable in the region of theé k‘5/5-law but
becomes inaccurate at the ends of the region where the geometry or the
molecular friction modifies the spectrum. But even at the latter limit
(12) will still be a good approximation which at least qualitatively
correctly represents the effect of friection.

The constent % in equation (12) must be exactly determined by
the hydrodynsmic equations; it has the same numerical value in all cases
where one may speak of statistical isotropic turbulence, and does not
depend in any way on the geometry of the flow. The theoretical deter-
mingtion of this important number will be attempted in section 5. There,
it will also be shown that the turbulent energy dissipation actually may
be written as a double integral of the type

k o

L/ﬂ dkt . . .b/\ dk'"' . . . , with the integrand signifying the energy
0 k

transferred from k' into k'' per unit time (equation (89)). This

integral is more complicated than the simplifying expression (13) which

results from (11) and (12); however, for the following comsiderations (11)

and (12) may be regarded as sufficient spproximstions. TFor S)c one thus

obtains
= Fx't)) [* o
Sk =lu + pnf dk!'? ——" f F(k') 2k'<gk! (13)
k k! o}

The decisive step of v. Weizsaecker's consideration is the stabe-
ment that this expression for k >> ko must be independent of k:
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Sk = S = const (for k >> kgp) (14)

because the total energy liles, almost entirely, in the long-wave region
of the spectrum, and the energy "transport" thus must become independent
of k.

Equation (13) mey therefore be interpreted as the_determining equa-
tion of the turbulent spectrum F(k) which must yleld for the region of

large Reynolds numbers the k-5/5 -law, and for still larger k values
the fading of the spectrum due to ‘the molecular viscosity.

2., Shape of the Spectrum in the Region of'the
Smallest Turbulence Elements

We put first u/p = v and differentiate (13) with respect to Xk.
Then there results

Then we define new variebles x and w by the equations

= 1g %, F(k) = F(kp)e™; w = w(x) (16)

Therewith (15) is transformed into

ZX_E 0 X_X ’
s 2l E+f e 2 Cax =fx % “Vax (17)
k {Fo % 0

’ K '
The constant V o = Svg—_ (cf. equation (9)) is essentially the

reciprocal Reynolds number of the total flow and therefore always very
smgll; 1f the Reynolds number itself were small, the flow could not be

turbulent at all. By repeated differentistion there originates from (17)

W

p:s
7 1 &w . 272
2 3 d.x VFO f =2 (18)
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In this equation, one may spproximately evaluate the integral

0 WX
f axe 2 by expanding w(x) in the proximity of x: w(xy) =
x

wix) + (¥1-%) %—‘% + + . . and breaking off after the second term. Since

the exponential function rapidly decays, one thus obtains a good approx-
imation

© _ WX -5
s s ()

By substitution into (18) there finally results

v Wix

dw’ HKO 2 1 =

<7-—)(-?—e b o— =2 (20)
dx

One recognlzes from (20) immediately the variation of the spectrum. For
not too large x and w the first term in the sum may be neglected and

one obtains

( . %‘) - 2(1 . %), te. - %; F(k) = FO(%>_5/3 (21)

as must be the case according to v. Welzsaecker's theory. TFor large x
and w, in contrast, the first term predominates; therefore one mst
then have

g:—{'. = F ~ const k™' (22)

In the region of the smallest turbulence elements the spectrum therefore
decays very rsepidly, namely with the seventh power of the wave number.

Only in the transitionel region from (21) to (22) are numerical
calculations necessary in order to determine the solution of (20). Since
one may put for smaller x, that is, for the region

3 .. 2x\[Fo
1 Lx <<Z lg _'V— —
(23)
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(therewith not only (18), but also (17) then is satisfied with sufficlent
accuracy), one may calculate, progressing from point to point, dw/dx
according to (20) from w, and therewlth derive w for higher x. It
is sufficient to perform the numerical calculation for a particular

large value of the comstant, for instance ?vi % = a. “For another

value b one may then obtain w by a simple similitude transformation:

wb(x)=wa<x+%lg%)-%lg% ) (2k)

as one recognizes by substitution into (20) and (23).
Figure 1 shows the result of the numerical calculation for -

2TK [i—? = gbout 1000. The numerical integration shows that for this

value in the region
x>5 =
= (25)
w(x) = 7x - 21.85 ’

More generally, one obtains therefore in this region of the k7 - 1aw:- -

w(x) =7x + 3.0 - hlg(% @) (26)

that is,
3, k4 T ’ -
F(k) = 0.0496 E§§@5) (%?) | (27)

A servicesble interpolation formmla which is correct in the two i}
limiting cases and does not result in any la.rge errors in the 'bransitional
region, elther, reads:

)5/3 (26)

F(k) = Fo(% 1+ (ks

If one defines I = n:/ko as the "diameter of the largest turbulence
elements" and introduces as the Reynolds number of the total flow
v
R = PYOLO

0= (29)

)8/5 -2
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one obtains according to (9), (27), and (29)
kg = 0.3,6150(1:{0.c)5/lL (30)

One mey denote ILg = n/kg as the "dlasmeter of the smallest turbulence
elements" and obtalns

Lg = 6.25Io(Rox) ~3/% (31)

By (9), (28), and (30) the form of the spectrum is determined for
the entire k-region. For the actual flows, of course, the shape of
the spectrum will be different for small k-values (k~kg) since there
the geometry of the tests plays a role, for instance, the shape of the
grids by means of which the turbulence is produced. In order to be able
to sensibly carry out the comparison with experiments, one will then
introduce & quantity kg 1n such a menner thet, for instance in the

domain of the k‘5/ 3 1aw (thus for kg >> k >> kg), the formule

_ ve2(k0\/? :
F(k) = gk—o<f> (32)

becomes correct. The quantity kg thus defined then does not give any

direct statement regarding the variastion of the spectrum for the smallest
k-values. Generally, though, the spectrum will greatly deviate from the

x>/ 5_lew in the region k ~ k.

For k >> kg, too, the spectrum will not unlimitedly retain the form

k"7. The well-known investigations of Burgers7 meke it very probable that
gt sufficiently small Reynolds numbers finally no turbulent motions what-

ever exist. On the other hand, the k'7-1a.w shows such repid decay that
the regilon k >> kg 1is practlcally insignificant. A somewhat larger
error will arise, particularly in the transitional region, due to the
inaccuracy of equation (13) itself; but it is probebly not worth while
to apply already at this point the much more complicsted equation of
section 5 to the problem stated here. The correct equations would st
?.ny)ra:be lead to somewhat different numerical factors in (27), (30), and
31). )

TBurgers, J. M.; Verh. d. Kgl. Nied. Akad. d Wiss. 17, Nr. 2, 1
(19%9); 18, Nr. 1, 1 (1940).
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For the comparison with experiment one needs the énergy distribution
with wave number for a certain direction, for instence with ki, since

the spectra have been measured experimenteally by Simm.ons8 and Dryden9
by means of the fluctuations of the velocity with time in an airstream
which is guided past the measuring point at a constant veloeity U which
is large relative to vy. Also, this spectrum has a different form

according to whether the Fourier expansion of v, or Yy is concerned.

Experimentally, first the spectrum for v, is required; however, we

shall also derive the spectrum for Yy since it wlll be necessary

later on, in the calculation of the correlation functions. Since
according to equation (5) (—kk) = 0, one obtains

2
By = 1%—(1 - %‘—) (33)

The spectrum of v, in %k, which we shall designate by Fy(ky)
becomes therefore

7 ) =f_,,f+w T2 2<l - EEZ)F(”
= %;fk i % (2 - %)) (34)
In a similer menner, thexspectrum for Yy becones
f+f+m uﬁkgz l<l "L)F(k)
-3/, = I (12 + 1,)(x) (35)

From (34) and (35) there follows for

(a) kg <k << kgt

5/3 3 | - _
F(k) = Fo(kro)/ thus Fy(ky) = 9_FQ.(RE%)5/ and F (k.x) 6o %)5/5

BSimmons, U. Salter: Proe. Roy. Sce. A 165, 73, (1938).

Ipryden, Schubsuer, Mock u. Skremsted: Nation. Adv. Comm. Aero.,
Nr. 581, 1938; Dryden, H. L.: Proc. V. Intern. Congr. f. Applied. Mech.
Cambridge, Mass., p. 362, 1938. ..
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(b) k >> kg
F(k) = Fg —-——kos/i]f,smb
P (k) = 1% 507 2520 37T
Fy (i) = 252 ko™ 52 T (37)

As a servicesble interpolation formule (which, however, is somewhat
less sccurate than (28) in the transitional region), one may again put

9F 5/3 K, \8/3|72
Fy (i) = rl%(l-‘?i;) 1 (ki;) (38)
with
kg F = 0.645 kg (39)
and
6F 5/3 8/3|-2
-2
with
kg * = 0.793 kg (k1)

Before the comparison with experiment is carried out in detail, we want
to raise the question at whet critlicael Reynolds numbers the transition

from the k'5/ 5-1ew to the k=T-law takes place, that is, - if one wants
to express it in this manner - the transition from the really turbulent
motion proper to the laminasr motion. One may regard as the critical
Reynolds number for this, perhaps, the expression

Rg =_pf.ﬂ ().;.2)

1/3
wherein, according to v. Welzsaecker, vg = VO(EQ) . From (29), (30),

and (31) one then obtains
Ry = 1G5 (43)
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The numericel value of k will be discussed lster on. At any rate, the
transition therefore takes place at a certain numerical value of the
Reynolds number, as was to be expected from genersl similitude considera-
tions. ’

In figure 2, the measurements of the spectrum Fx(kx) by SimmonslO

are compared with the theory. The measurements in question are intensity
measurements on an alrstresm which flows past the measuring point at the
velocities U = 456 cm/sec (0), 608 cm/sec (X), 1060 cm/sec (), and
which has been mede turbulent by a grid of 7.6 cm mesh width; the meas-
urement was made 2.1 m behind the grid. The measured points of Simmons
are plotted individually only in the right pasrt of the figure, in the
left half the aepproximate scatter of the measured points is indicated

by a vertical line. The abscissa is k dIn em~1 (in logarithmical
scale), the ordinate Fkax), likewise logerithmically, in arbitrary

units. If one assumes U/vo to heve the same value in all three meas-

uring series, which is confirmed by other measurements by Teylor, one
obtains, in the cese of a suitable selection of this ratio, the three
curves plotted in the flgure. Qualitatively, the Simmons date are well
represented by the curves, particularly salso the divergence of the three
test series in the short-wave part of the spectrum. In detalls, however,
there exist considerable discrepancies; one recognizes from the figure

that the range of valldity of the k'5/3-law is here sé_small that =a
reliable check is not possible. The reason for this is the smallness
of the Reynolds number Rg. For k = 1 em™)  the dismeter of the turbu-
lence elements is 3 cm, thus sbout half as ldarge as the mesh wildth of
the grid; in thils region, the turbulence is not yet fully isotropic,

therefore the k'5/5 -law cannot yet be valid. However, already for

X = 4 em~l the influence of the molecular viscosity becomes noticeable,
and the intensity drops off merkedly. The related measurements by Dryden
quoted before which extend over a large spectral reglon have been made

at Reynolds numbers so small that the validity of the _k‘5/3-1aw can
hardly be checked. Therefore it would be desirsble thet similar meas-
urements be carried out at very much larger Reynolds numbers. For the
ratio U/vo, one obtains from the adjustment of the theoretical curves

to the measuring points of U/vo = 53k 1if one identifies Ig with the

mesh width of the grid. Thils value agrees well with measurementsll of
this ratio in similer tests if one assumes & +to be gbout 0.5,

10gimmons, U. Salter: Proc. Roy. Soe. A 165, 73 (1938).
1lgf. G. I. Taylor, Proc. Royel Soc. A, 164, 486, (1938).
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Another and probably more accurate determination of k 1is obtained
from the damping with time of the turbulence, already theoretically treated
completely by Taylor (cited before). For the total energy loss per cm’
and second: S, there results from (9), (13), and (14)

s = ox L3 w7, (k)

For the damping with time of vy there must thus apply

VA2
%<_g_> - n A3 (45)

with the solu.tionl2

vo(%) = (46)

Taylor who essentially derilved this equation reports on measurements
by Simmons in which U/vg(t) was ascertained as a function of t =x/U

(x equals distance of the measuring point from the grid). From (46)
follows

() vol0) T8 "N Ig T vo(0)

. V3 ox X U _ 4+ o0.68c X (47)

If one puts vh =u'\y3 (u' =\ w 2 according to Taylor) and identifies
0 x
Ip with the mesh width, there follows from Taylor's measurements k = 0.85,

from the corresponding measurements by Dryden a somewhst smsller value.
However, becsuse of the uncertainty regarding the value to be inserted
for Ig, this determination is probebly still uncertain by about 50 per-

cent.
3. The Correlation Functions

Taylor and von Kérmén (cited before) studied the correlations which
exlist between the veloclties at two points at a given distance. The two

laFootnote at the time of proof correction: For this solution,
= const. 1s presupposed which certainly is not the case for larger
times. The problem of damping is investigated more closely in s paper
of the author about to be published (Proc. Roy. Soc. A.).
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correlation functions Rj(x) and Ro(x) which therein play the main
role, are defined as -

Ry(x) = vx(P}]—vx(Pg) RQ(X) _ Vy P]_)Vy Ps (48)

Vx Yy _

with the point P, displaced with respect to the point Py Dby the
distance Xx in the x-direction. -

These functlons are, according to Ta.ylor, in a simple relationship
with the spectra:

Ty (T )08 o

[>2]

dkxFy(kx)cés k.x -
Rg(x) =

fo T, Fy (i)

With the aid of equations (34) and (35), (49) is transformed into

5f aF(k)(sin kx - kx cos kx)k=2x~2
0 _ ]

[ st o | '

%f dkF(k)(k2x%s1in k x + kx cos kx - sin kx Jx~Ox 3 )
Rp(x) = —> SR — (50)

fom aF () _

From these expressions one recognizes immediately the correc‘bness of
von Kérmsh's relationship _

Ry (x)

2—Rl+—gx— . . (51)
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The formulas (50) may be approximately evaluated in the two limiting
cases x << 1/kg and 1/kg<< x << 1/kg. When x << k-l-, it is advisable
8

to expand the integrands with respect to powers of x. The first terms
of the expansion then lead to the quantity

k2 =0 (52)

0

which may easily be calculeted from (13), (44), and (29):

K2 = gﬁ-—ERRokoa (53)
Thus one obtalns:
s
Rl(X) =1 - T + . .
For X << 1/kg (54)
Rz(x)=l-§—25£%+...

Taylor defined a length A by the equation

ez (55)

and designated it as a measure for the magnitude of the smallest turbu-
lence elements. According to (53), A becomes

Io 1
A= 2.71 = 0.U3U1,4(Ror ¥ (56)
Rgk
It must be emphasized that AN 1s not identical with the quantity
Lg (equation (31)) which we have denoted as "diameter of the smellest

turbulence elements" and that A salso depends on Iy and vo in a
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menmer different from that of Lg. A comparison of (31) and (56) shows
that for sufficiently large Reynolds numbers ILg becomes <<A.

In the opposite limiting case l/kS << X <L l/ko one obtalns
from (50)

1 - 0.643(xx)2/3 + . . .

Ry(x) ;
(57)

Rp(x) = 1 - 0.858(kox)2/3 + . . .
Here these first terms of the expansion do not depend on the special form
of the spectrum in the proximity of Xkg; only for x ~ l/ko does the form

of the spectrum in the proximity of kg becomes important, there, however,

the problem mey no longer be treated with purely statistical methods.
The formulas (54%) and (57) thus give essentially a complete description
of the correlations in so far as they may be regarded 88 a consequence
of statistical isotropic turbulence. g

The formulas (54%) and (57) also show clearly that the correlation
function dces not have the same form in =21l flows but that rather, in the
case of variastions of the parameters, the inner and outer parts of the
function undergo different similitude transformetions. This polnt has
been stressed particularly by Taylorll in contrast to a different con-
jecture of von Kérmén (cited before).

For comparison with experiment, the measurements of R;(x) and Ry(x)
made by Simmons have been plotted (circles and dots, respectively) in
Tlgure 3; furthermore, the theoretical curves calculated according to -
the exact formuls (50) are shown. Here again Ly has been ldentified

with the mesh width of the grid and A has been calculated from the
spectrum for U = 1060 cm/sec The experimental values agree, in fact,
with the theoretical ones very exactly at the smaller values of x,
actually more exactly than could have been expected in view of the uncer-
tainty of Ig. Beginning from xky~ 1 the deviation of the experimental
points from the theoretical curves becomes naticeable which was to be
expected from the derivation. The variation for lerger X-values depends
on the behavior of the spectrum in the proximity of kg which cannot,

in principle, be represented by our formulas.” But even for larger x-values
the deviations from the theoretical curves remein small.

13G. I. Taylor, Jour. Aero. Seci. 4, No. 8, 311, 1937.
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4. The Pressure Fluctuations

While studying the diffusion in a turbulent alrstream, Taylor (cited
before) has derived a relationship between the correletion function for
the diffusion and the root mean square value of the pressure gradient.

We shall investigate therefore also the root mean square values of the
pressure fluctustions from the viewpoint of the theory here described.

With reference to equation (2) one may expand the pressure into a
Fourier series

p = kagei?,p_g_ = p* (58)

and the fundemental hydrodynamic equation

v=~(¥Wv - £vp + & Av
A ~VIZ 3] D =
ls transformed into

1—}_\]:; == %i(.‘fk'l_i)lf.k_y - '13"15 Px - % kzz;_; (59)

0 it follows

Because of (Ekk)

. £ B
Y g i(yg'g)[‘%—ls' "8 Tl -5 ¥

B = - 2 (o) (e k) (60)

For the root mean square values of pressure and pressure gradient there
results

RNy e R b &t

k
We are interested, first, in this latter mean value:
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—_— 2
grad® p = Z Z B G By ) (e ) (e i &) (62)
E k' kU KT - T T TT -
The superscript bar indicating epproximetion to the mean signifies
here simply spproximation to the mean in time. If one wants to calculate
mean values of the type (62), one must teke as & basis some kind of
"assumption of disorder" regarding the turbulent motion. One msy start
from the fact that the amplitudes v 1n the course of time fluctuate-
by a value given by (10) or (28), respectively, so that the time average
v, ¥, is glven simply by the spectrum (28). The phases of the Vs

however, will in the course of time pass through all possible values; all
values of the phase will occur, on the average, with the same frequency.
If one could regerd the phases pertaining to different wave numbers as
completely Independent statistically, there would, in taking the mean of

t fact ) t
such products of four factors gklg vk3¥£4’ be lef o?ly the terms in

which every two wave numbers are equal and opposite; thus, terms of the

type zglx;glygenge, and these mean values could be réplaced by thg pr?j
ducts of the mean values of the squares of the amplitudes:

Ty Y-l epteko T Vg Yok Yeotky (63)

Actually, however, statistical correletions will exist between the phases
pertaining to different wave nunmbers since the waves mutually influence
one another. 1In section 5 we shall attempt to estimate such correlations
in e simple casé. In spite of the presence of the correlations, however,
we are inclined to assume that in s sum of the kind (62) the terms of the
type (63) make the largest contribution since theilr mean value is diffep-
ent from zero even in the first approximetion, without any assumption
regarding the behavior of the waves with respect to time whereass the
other mean values attain a value different from zero only beceuse of the

finer fluctuetions of various waves. We believe therefore that one obtains

a servicesble approximation 1f one takes only the terms of the type (63)
in (62) into consideration. Then there results

s - oo O ) () () (64)

k'k'' (k' - x")2
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In teking the mean with respect to the directions of the . Vi - one assumes
again all directions perpendicular to k for ¥ to be eqﬂﬁlly probable -

it 1s expedient to use the relation

2
T - _[éh ] (ggiépz)] (65)

Thus one obtalns

e D frwr ) Gkt ks S

k'k'! (k' - &'')2

If one sets (k'k'') = k'k"'¢, one can perform the integration with respect
to £ eand finds

2
gf&d - %_ K& lvkle lvk' '2lk'k' 'W( 1:) (67)
where
= i -1 - il Al 1l - 82) 1 +
\P(s)"'ws —1633[l+3 52"'35 S6+£—723 ]T_:I]
(68)

For 0 < s < 1 there aspplies approximately

(S)~§i< -282+§-E) (69)

15 7 21

If one trensforms the sums into integrals and substitutes the spec-
trum (28) into (67), there follows finally

- * gkt i\
grad®p = 9DV0 k03f f 2 8|2 s
k'3 ko k”j k! 3 Kt 3.
(B (B
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One recognizes from (70) that the integrals converge at small k-valﬁes,
and that one may therefore perform the integration from k = 0 without a

considerable error. This shows that gradap is actually determined by the
behavior of the spectrum at large k, that 1s, by the smallest turbulence
elements. Had we calculated p<, we would have found, on the contrary, that
the integral diverges at smell values of k, thus that its value is deter-
mined entirely by the largest turbulence elements. Therefore, the value of

P2 cannot at all be calculated according to the method used here; for,
first, in the case of small k, the spectrum has & form dependent on the .
geometry; and second, 1t would surely by quite unjustified to consider, for
the largest turbulence elements, only the mean values of the type (63) since
the geometry certainly impresses definite phase relations upon the system of
the largest eddies.

Equation (70) now becomes

- - W& )
gradp = %pavoukoh/akfbfo gg%fo ng}lﬁ L+ 87 :g?__l) + /3] "

The double integral at the right was estimated, according to a gra-
phical method, to be 0.763; thus there follows finally (cf. (30))

0.17p2v ko 3k 23 - o (72)

grad?p

0.0502v5 ko R (73)

Taylor (cited before) had expressed the conJecture that grad2p ]
ghould have the same order of magnitude as p2v02(av/ax)2 - thus the order
of magnitude pEVOhk02/3kSh/3. One recognizes now from (72) that gred2p
must be considerably smaller, the more so, the larger the ratio ks/ko.
The length Aq defined by Taylor: -

(éé}é _ 2£§£%25 o . . é;h) —
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that is,

N
V,

02 20 (75)
M

!
wiro

must, therefore, for large Reynolds numbers, become considerably larger
than the length A of equation (55). From (75), (73), and (56) follows

An = N0.42Ryr (76)

gl

It is true that this result does not agree with the experimental
findings. Taylor indicates, for a test which Simmons had performed
adjolning similar experiments by Schubauerln, AU/K = 0.5 where one must

assume epproximately <7Ron =~ 3.9 according to the test conditions.

Thus one must raise the question whether the result (72) has perhaps been
falsified by the fact that only the terms of the type (63) were taken into
consideration in teking the mean. However, one can easlly see that this
may perhaps affect the numerical factor in (72) but that the dependence of
ko and kg, that is, the dependence of Ay on (Roxk) 1s in no way con-

nected with this approximstion. For already equation (62) shows that on

the right side the normalizetion factor v04k04:3 must appear, because

of equation (10). After the mean has en taken, this factor is supple-
mented by a factor, of the dimension kg73 which obviously can be at most
of the order k32/5 ; 1t must be, because the pertaining integral with
respect to k would diverge like k2/5 1f the decay of the spectrum
would not set in for k ~ kg with k~T. There would remain the possi-

bility that only the numerical factor in (72) has been estimated as too
low due to the consideration solely of the terms of the type (63). But
it is hard to imaegine that the correct expression would inerease by more
than a tenfold - which would be necessary for lnterpretation of the
experiments.

Perhaps the contradiction may be cleared up in the following manner:
The main contribution to gradap stems from wave numbers of the order k

thus, from turbulence elements whose dlameter measures a few millimeters.
In Simmons' test, the airstream is heated by a hot wire of 20 cm length

stretched across the wind tunnel, and then the distribution of the heated
alr is measured at a certain distance behind the hot wire. Precisely the
smeller distances (5 to 15 cm) are decisive for the determination of An.

s 2

ligchubsuer: Rep. Nat. Adv. Comm. Aero. Nachr. Nr. 524, 1935.
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It suggests itself to assume that the hot wire itself produces in
the airstream a small vortex street and additional turbulence, with the
turbulence elements probably having a length of a few millimeters - that
1s, the wire increases precisely the intensity of the turbulence in the

spectral region which exerts the strongest influence on grad?p. The
additional turbulence in the immediate proximity of the wire is probably
much more intense than the originsl turbulence of the same wave range.
However, this additional turbulence is repidly demped, of course, and it
is surely difficult to estimate whether this turbulence alone can explain
the discrepancy between (76) and the empirical Aq-value.

5. Energy Dissipation for Normal Isctroplc Turbulence

The investigatlons of the preceding section are already closely con-
nected with a basic problem of the statistical turbulence theory: namely,
with the determinetion of the energy dissipation in the case of normal
energy distribution, that is, the determination of the constant k in
equation (12). In this problem the molecular friction may be neglected
entirely. The fundemental hydrodynamical equations could therefore be
presupposed in the form

i=~(zv)x-%-Vp Vv =0

Furthermore, a suitably singled-out partial volume of the fluid 1s to be
selected as normalizetlion volume which under certain circumstances is
moved simultaneously with the fluld, corresponding, -for instance, to the
mean value of the veloeity with respect to the volume. We assume therefore
that the volume moves with the velocity u. Then (60) 1s transformed into

%{_ =1y (¥ 1k) I:_\L_lg_g. - (_k ok } + :L(z_:,g)_yE (77)

For the calculation of the energy dissipation, one has to ascertain
how the intensity lzkzl of a certaln natural vibration (or perheps

better: the sum of guch squares of amplitudes with respect to a small

k4Ak
spectral region Alk: % lxk | varies in the course of time. One
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recognizes from (77) that one needs for this purpose time averages with
respect to products of the type

EE; zgg ng (78)

wherein 55 = -k; - ko. Because of the statistically uniform distribution

of the phases, these mean values would disappear if there would not exist
statistical correlations between the phases pertaining to different k

which stem from the mutual influence of the varlous waves, as has been
explained already in section 4. In order to ascertasin these correlations,
one must somehow express in the equations the influence exerted upon a
wave with given k by waves with a different KkK; one may do this for

instance by representing one of the three amplitudes in (78) as a time
integral over ik and expressing ik in turn by a sum over two other wy

according to (77). Then one obtains products of four amplitudes Vi each

of which, however, must partly be taken at different times. For such pro-
duets the considerations of section 4 are valid according to which one
obtains a first approximastion by teking only products of the type (63)
into consideration. Of course, one could continue the procedure in prin-
ciple and attempt to calculate the other mean values of quadruple products
by tracing them back to six-fold ones, etec. However, such calculations
would probably become much too complicated; the higher terms probably also
would make & lesser contribution, and we shall thus be content with the
first step.

For these ‘calculstions, one will obviously need measn velues of the
type

Y ()L (& + 7)

and we define therefore
k+Ak

2 mwle Beal - 3)

Y . (79)

E Gl

Rk(t,’l‘) =
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The summation over a smell spectral region Ak has been included
into the definition of Rk(t,T) 80 that the megnitude of the normaliza-

tion volume does not directly enter into Rk(t,T) and that the mean is

teken equally over all directions of k. Evidently the spectral regio? YAV 4 B
must be selected wide enough that many natural vibrations of the normaliza-

tion volume still may be accommodated in it (that is, X2ARV >> 1), yet
very small compared toc k itself. These requirements are for the turbu-
lence elements of the order of magnitude V +themselves no longer compatible
but for those, the-statistical methods cennot be applied anyway. The whole
procedure thus can be carried out only if it is found that the large turbu-
lence elements practically éo not any more contribute to the mean values to
be investlgated.

In order to obtain from the hydrodynemical equations information
about the quantities Rk(t,T), it suggests itself to examine the following

expression:

Gt + Bt - 3) - ’iZ<E§% )(—k B 155) v 1B SF o) :

t+r
In this expression one can replace gkfz by a time integral with respect —
T _____
3
to XE' :
T T
t+L 2 g z+T Lot
Vi1l = Vier 8t' 4+ v (-T) = ar 'y 12 + v (=T 81
< T X =3 o X X

If T 1s selected sufficiently large, the correlstion between
v k'(t) and ¥y 1(T) will disappear; it is therefore expedient to per-

form, after substitution into (80), the limiting process T—Jw, If, in
addition, one takes the mean with respect to the 3irections - thus elimi-
nating the term with u - one obtains from (80) and (81):
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k.+Ak- k‘l‘Ak o) t-[-I-—T T td%-—r t
ik(t + l)x k( - I) = - f dT' !1{"2 -15! v-—k'—k." li -
E 2 2 E K ;;; 0 = =

s
(£ K D\GeTgr B 0l +-L

_| Ve £rv

= X (82)

If one furthermore, as in section 4, takes into comsideration the terms
of the type (63) only, also replaces k - k' by k', and integrates with
respect to the cosine of the angle between k and this vector, there

follows:

ksAk

kyAlc -1 I= 1 T
S bl -9 et g nl ol Fnl - wr o)

Rkv(t + I 5 T',-r')k-5x'-5(k2 - x'2) Ekk'(kh' L %1@1;'2) -

(@+k£ﬂ@-keﬂﬁ%%%ﬂ (83)

This equation presents the possibility of expressing the differential

dRy (t,T dRy. (t,T

By (t,7) and By (8,7) by the Ry them-
dt dar

selves; when the Ry are known, one can, moreover, calculate the energy

dissipation from (85), putting T = 0. For this purpose we shall assume
that the entire turbulence phenomenon is elther stationary or is damped
very slovly so that the times Quring which the intensity |g?| noticesbly
varies are very long compared with the fluctuation period of V- The

notation lYkel represents, therefore, the mean value over & time which is

certainly much longer than the fluctuetion period but is very much shorter
than the damping time.

quotients with respect to time

de(t:T)

The equation for glves a measure for the fluctuations of

the quantity Rk(t,T) as a function of t ebout its time mean:

Re(T) = Rk(%,7) (84)
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One may surmlse that these fluctuations ere small in the region of small 7T~
which 1s determined by the small turbulence elements, and that they increase
with growing T; this question will be further investigated later on.

Before carrying out the further calculations one has to determine how
the partial volume V and i1ts velocity u are to be chosen. One could
first try to put u =0 and to identify V with the total volume. How-
ever, one would obtain an erroneous picture -of the actusl conditions: The

decrease with time of the correlation function Ry(t,T) = R (7) as a

function of T is determined in thls coordinate system by the largest
turbulence elements, and is therefore very rapid. One can show that the
correlation function in this coordinate system is given with sufficient

approximation by N _ - “.;

The calculations which have led to this expression need not be discussed

in more detaill since the expression is not further used later. The

physical interpretation of the expression is glven by the following con- -
sideration: The function Ry(7T) in it decreases after a time of the -

order ﬁél; that 1s the time during which, for instance, precisely an

v
o)
eddy of the wave length %}, due to the hlgh velocity in the largest tur-

bulence elements, passes by the point of observation. The fact that the
correlation functlon decreases after that time signifies therefore simply
that the velocity in the largest turbulence elements ig of the order of
magnitude vg, but, statistically, fluctuates sbout values of this order.
This phenomenon is not connected with the disintegraetion of the eddy of

the wave length %—1. If the F(k)~ k~5/3 1aw 1s valid, 1t is rather to

be expected, according to the similitude considerations of v. Weizsaecker,
that the disintegration of the eddy tekes place only after time intervals

of the order 2nvo-lk'2/3k0'l/3. On the other hand, however, the energy

dissipation is connected with the disintegration of the eddies, not with
the motion on a large scale. If one wants to describe the disintegration
of the eddies in equations, one must move the coordinate system at the
seme time. One then must make the linear dimensions of the partial vol-
ume V somewhat, but not very much larger than %} and move it simul-
teneously in proportion to the mean velocity within 1t. We shall assume v
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experimentally thet one can give for every k & volume V corresponding

to it in such a manner that Vk? becomes independent of k and that for
the thus selected, simulteneously moved volume elements, the correlation

function R(t T) is a universal function of the varisbles vpk / 3k(]j 3%
and v0k2 51:% 5r as is to be expected according to v. Weizsaecker's
similitude consideration. We shall show that the relations for Ry(t,T)
arising from (83) actually can be satisfied by this assumption if the Fy
are distributed according to the k'5/3—law.

If one puts Ry (t,T) = &({,n) wherein
t = %Qk2/5ké-/5t n = %o_kZ/Bké/BT Koy (85)

there follows from (83)

dn 16f dyf(y)f dn' [ ; - ,n - n)g((g + Il%ﬂl)ﬁ/znxyzb) -

S(C - 32—'-,11 + n')s (( - 32 “'_)yzb,n'yzb)]
g (86)

ds(g’“) if dyf(y) fm an' l: '; - —,n - )s((l; + “_%—’L')yz/3,n'32/3) -

- T W)ss - %n:)ye/z,n,yz/aj

where

y -

(87)
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These equations actuslly do no longer contein the constants kg, vo-

The reason 1ls that the integral with respect to y coOnverges for small as
well as for large y; f£(y) disappears sufficlently for y =0 as well as
for y—>w. Therefore one may take the integral over k', instead of from
kg, simply from O, without considerable error; moreover, the convergence

of the integral for large values of k shows that the molecular friction
actually is of no importance in this problem; the behavior of the spectrum
in the region of the smallest turbulence elements is unimportent for the
correlation functions R(t,T) and the energy dissipation for medium
k-values. ' ) o

.

Before attempting the numerical solution of (86), we shall use the
equation (83) for calculating the energy dissipation in the approximation
here aspired to. For this purpose we put T =0 and integrate the equa-
tion (83) with respect to k between two arbitrary limits K3 and Kp:

¥ ' '
& K e %l u(ax)h/: f arRes - om YR (b - o) X N
(2 - ktz)E%ag'( skt gkak 2) - (€@ wB)(eR - k'2)2131: = t: (88)

The integrand on the right side is an antisymmetrical Tunction in k '
and k'. If one calculates the variation with time of the total energy,
that is, if one puts K; = 0, Kpo = =, there resultis therefore zero, as

far as the integral on the right converges at all. Thet is, the total
energy 1is constant in time; this is a necessary reguirement since the
molecwlar friction has not been taken into consideration. However, if
one considers the variation with time of the energy which is contained in
the part of the spectrum lylng between K; and Ky, the ilntegral on the

right side may be transformed in the following manner (we shall call the
antisymmetrical integrand simply J):

dk'J fk fK 'y -f fdk'(J) (89)

s}

Ky
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In the first of the two integrals on the right J 1is always posi-
tive; in the second (-J) 1s always positive. From this notation there
follows that the first integral msy be interpreted as the energy which,
per unit time, flows from smaller wave numbers (k' < Kj) into the region

between K; and Kp; the second integral as the energy which flows toward
larger wave'numbers (k' > Kp). If one puts, in particular, Ky =0 end
K2 >> kn, the second integral represents the entire energy dissipation;
for the normal -spectrum Eﬁ(k) ~ k'5/j] it must prove to be independent of
K,. Thus one obtains from (83), (86), and (89) for the energy dissipa-
tion the expression

Ko
S = ggvgkoJ;: df—.."fok ay£(y) J: dng(c - g-,n)s«c - -g—)yz/5,n32/5)

= 530 ﬁ " ay( e L " anst - g,n)g((; - g)ye/s,,,ye/a) (90)

This expression is actually independent of K, as it must be. Since
the entire energy dissipation according to equation (4k4) 1s also given by

pﬁ%;;gko, there follows

K = —%J;ldy(-lgy)f(y) J: dn&(& - 121,71)8 ((C - %)yz/3,ny2/3) (91)

From this equation &k can be calculated numerically if the funection
g(t,n) 1is known.

We now turn to the treatment of the equation system (86). This sys-
tem represents a considerable simplification compared to the initial
equation (77) in so far as it does not any more contain any dimensionsal

quantities, and is already derived from the equilibrium spectrum k-5/3.
On the other hand, (86) also still contains statements regarding the
fluctuations of the g({,n) as a function of the t and is, for that
reason, doubtlessly too complicated to permit rigorous solutions. One
could attempt to completely neglect the fluctuations in a first spproxi-
mation, and to calculaete with the mean values. Unfortunately, however,
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it turns out that the contribution of the fluctuations in certain regions
is large. One recognizes this from the second equation (86).

For, if one puts g o _ .

g(t,n) = &(n) + aa(t,m) o (92)

where g(7) signifies the mean value over - §{ of g(f,q):

g(n) = &(&,n) B (93)

there follows from the time mean of the second equation (86):

%J: dy£(y) Lm dn'[e(n' - 1) + a(y' + n)]s_(n'yzb) “ |

=-§-J:° ayt (y) k];m'dh'!}g(c, -1 - ) (( + )y2/5,n y2/5)

Ag( - L n)As«g - 712_71')3,2/5,”'3,2/3)] (9%)

This relationship shows that the fluctuations Ag(t,n) cammot
alweys be small. It is true that the left side of (94) vanishes for
n = 0; this follows from the relstion

f(bl—,) = - 32(y) “ (95)
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which will have to be discussed later, and signifies that the spectrum

kf5/3 is actually in equilibrium; however, for larger |q| the left side
assumes appreciasble values. Therefore, 1t 1s doubtful whether one will
obtain a sufficient approximation if, in the transition from (82) to (83),
one takes only the mean values of the type (63) into consideration. How-
ever, I did not succeed in improving here the approximation or in
obtaining more than a very crude estimation of (86).

One may perhaps assume for such an estimation that, for large values
of 1, the first term of the summation on the right side of (94) is much
larger than the second. For 1n the first one, the integral 1s taken over
the region 7' ~ 1 vwhich probably contribuites a great deal whereas 1in the
second, for large 1, the factors Ag have already strongly decayed in
the entire integration range. One may therefore attempt the assumption,
at least for large 1, that the second term of the summation on the right
side of (94) may be neglected. ‘In this approximation the time average of
the first equation (86) then becomes, with use of (94):

%(ﬂl= -%f (fy dy) Lﬁ an'g(n + n‘)s(n'y2/3) (for n>>0) (96)
N 0

One may utilize this equatlon, for instance, in such s manner that
one assumes a plausible form for g(n), leaving the scale in the
n-direction undetermined at first, and determining it subsequently so
that the equation (96) ié valid as exactly as possible for large 7. In.
this way one will describe the steepness of the decrease of g(n) for
large 1n with some correctness, and precisely this steepness is decisive
for the value of «. '

In the practical execution of the csasleculation it is expedient to
introduce, in the place of y and f(y), new variables

s = y2/3; o(s)as = £(y)ay (97)

Then there spplies as one recognizes from (87) (compare also (95)):

9(3) = ~so(s) (98)
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This equation is based on the fact that the energy dissipation from
the wave number %g to the wave number k colncides with the one from k

to ok, except for a factor qualified by the similitude transformation.
Furthermore, there then applies in good aspproximestion _

o(s) = -553s(1 . 55)(1 - %3) (for 0<s<1) (99)

and for larger s one can reduce ¢(s) by means of (98) to the range
0<£s< 1. ' h

Figurelﬂ gives e plausible curve for g(n), and in addition the right
(v o]
side of (96) as JF dn . . . and g'(n). The scale Is selected in such
9]

e mammer that the two,last curves coincide for large 1. Considersble
differences then exist for small 7 but there the equation (96) also can
no longer be correct. If one substitutes the function g(n) thus
obtained into (91) and neglects the fluctuations, there results for k:

1 o _
Kk = i—f ds(-1g s)o(s) f dng(n)g(ns) = 0.98 (100)
23 o o

This crude estimation therefore glves the correct order of magnitude
for «, but the exact value may well differ from 0.98 by as much as a fac-
tor 2. The calculations of this section thus have not led to an exact
calculation of the constant k but they did provide a qualitative mathe-
matical representation of the processes on which the energy dissipation

is based. Perhaps it will be possible to arrive at a rather exact experi-

mental determination of k by means of a comprehensive discussion of the
various experiments of Simmons, Dryden (cited before), grandtll5, and
others regarding the spectrum and the demping of turbulence.

Translated by Mery L. Mahler — :
National Advisory Commlttee - - .
for Aeronautics

15prandtl, L.: Proc. VI. Intern. Congr. f. Abpl.'ﬂééh. Cambridge,
Mass., 1938, p. 340,
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Figure 1.- Representation of the function w(x).
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JFigure 2,- The turbulent energy distribution as a function of the wave
number,
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Figure 3.- The correlation functions.
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Figure 4.- The correlation function g(n).
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